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Highlights:

• With the method of stationary phase or steepest descents, the two different asymptotic representations of the inter-
facial viscous ship wave elevation are derived for the regions inside and outside the Kelvin wedge. Near the cusp
lines, the wave elevation at a greater distance can be expressed in terms of Airy integral.

• Using the method developed by Chester, Friedman & Ursell, an uniform asymptotic expansion which spans three
separate domains away from and near the cusp lines is obtained. It is convenient to be used for description in the
far-field ship waves.

1 Introduction
To study the combined effects of an upper fluid and viscosity on the waves generated by a submerged body, the two
semi-infinite fluids system of different densities were used to derive the integral solutions of interfacial elevation due to
a point force moving in the lower viscous fluid by Lu and Chwang(2005, 2007). The azimuth angle is denoted as θ and
θ = 0 is the moving path of the point force. In the region with |θ| < θc = arctan

√
1/8, two real saddle points exist for

phase function which appears in the denominator of the integral solutions. When |θ| > θc, two conjugate complex saddle
points exist. When |θ| → θc, two saddle points coincide. The method of stationary phase or steepest descents is used to
derive the asymptotic representation of the far-filed waves profiles when θ is away from θc and Airy integral method is
employed when |θ| ≈ θc, but these two kinds of asymptotic expressions are discontinuous across ±θc.

The ordinary method of steepest descents is extended to treat the case of two coalescing saddle points by Chester,
Friedman & Ursell(1957), which is referred as the CFU method in the following. Based on our experience of evaluating
the capillary gravity time domain Green function(Dai & Chen, 2013), we apply CFU method to obtain the uniform
asymptotic expansion of interfacial viscous ship waves at a large horizontal distance.

2 Mathematical expressions of interfacial viscous ship waves
The two-fluid system with an upper inviscid fluid and a lower viscous fluid is assumed to be incompressible, homogenous
and stable. Cartesian coordinates are taken on the undisturbed interface between the upper and lower fluid, the x axis
points to the direction of the moving point force and the z axis vertically upward. The point force F = (−F, 0, 0) is
located at (0, 0,−z0) with z0 > 0 and moving at a constant velocity U . The density of the upper and lower fluid is denote
as ρ1 and ρ2 respectively, σ = ρ1/ρ2. The dynamic viscosity of the lower fluid is given as µ , ε = µg/(ρ2U

2) with g the
gravitational acceleration .

The Laplace equation is taken as the governing equation for inviscid flows while the steady Oseen equations are
taken for viscous flows. By applying the Fourier integral transform, the elevation of interfacial ship waves η can be
expressed as a double integral(Lu & Chwang , 2007)

η =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

A

D
exp(iRf)dαdβ (1)

where

A = Fλ[(iα+ 2εK2) exp(−Kz0)− 2εKB exp(−Bz0)], (2)

D = γK − α2 + 4iεαK2λ+ 4ε2K3(K −B)λ, (3)
f(α, β) = α cos θ + β sin θ, (4)

K =
√
α2 + β2, (5)

B =
√

iα/ε+K2, (6)
λ = 1/(1 + σ), (7)
γ = (1− σ)/(1 + σ). (8)

(R, θ) are the cylindrical coordinates on the horizontal (x,y) plane such that x = R cos θ and y = Rsinθ .



3 Nonuniform asymptotic expansion of ship waves
For small ε, the dispersion function D has two zeros with respect to α,

αj(β) = (−1)j+1a0(β) + iεa1(β) +O(ε3/2), (j = 1, 2) (9)

where

a0(β) =

√
(γ2 + γ

√
γ2 + 4β2)/2, (10)

a1(β) =
4λa60(β)

2a20(β)− γ2
. (11)

Using the Cauchy residue theorem, the leading terms which contribute significantly to the far-field wave profiles can be
written as

η =
Fλ

2π

2∑
j=1

∫ +∞

−∞
dβ
a20(β)Nj(β)

2a20(β)− γ2
exp[−εa1(β)R cos θ + iRfj ], (12)

where

Nj(β) = [1 + 2(−1)j iεγ−2a30(β)] exp[−γ−1a20(β)z0]− 2(−1)j i
√
εγ−1a

3/2
0 (β)

× exp
{
−
√
a0(β)/2ε[1− (−1)j i]z0 − (−1)jπi/4

}
, (13)

fj(β, θ) = (−1)j+1a0(β) cos θ + β sin θ. (14)

If |θ| < θc, there are two real saddle points for phase function fj(β, θ) (j=1,2), which are given by

βjk = (−1)jγqk
√

(qk + 1)/2 tan θ, (k = 1, 2), (15)

where

qk = 2
[
1 + (−1)j+k+1

√
1− 8tan2θ

]−1
. (16)

If θc < |θ| < π/2 , two complex saddle points are conjugate

βjk = (−1)jγqk
√
qk + 1 tan θ/

√
2, (k = 1, 2), (17)

where

qk = 2
[
1 + (−1)j+k+1i

√
8tan2θ − 1

]−1
. (18)

If |θ| = θc , these points coalesce into a single saddle point of order 2

βjc = (−1)jsgn(θ)
√
3γ/2. (19)

When |θ| < θc , we have the asymptotic solution for waves within the Kelvin wedge

η =
Fλ√
2πR

2∑
j=1

2∑
k=1

a20(βjk)Nj(βjk)

[2a20(βjk)− γ2]
√∣∣∣f (2)j (βjk, θ)

∣∣∣
× exp
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− εa1(βjk)R cos θ + iRfj(βjk, θ) + i · sgn(f (2)j (βjk, θ))

π

4

]
. (20)

When |θ| ≈ θc , We have the asymptotic solution for waves near the cusp lines (|θ| = θc)

η = Fλ

2∑
j=1

a20(βjc)Nj(βjc)

2a20(βjc)− γ2

 2

R
∣∣∣f (3)j (βjc, θ)

∣∣∣
1/3

× Ai

f (1)j (βjc, θ)

(
2R2

f
(3)
j (βjc, θ)

)1/3
 exp [−εa1(βjc)R cos θ + iRfj(βjc, θ)] , (21)



which Ai (•) is the Airy function defined in Abramowita & Stegun (1967). When θc < |θ| < π/2 , We have the asymptotic
solution for waves outside the Kelvin wedge

η =
Fλ√
2πR

2∑
j=1

a20(βj2)Nj(βj2)

[2a20(βj2)− γ2]
√∣∣∣f (2)j (βj2, θ)

∣∣∣ exp [−εa1(βj2)R cos θ + iRfj(βj2, θ)]

× exp

{
i
2

sgn
[
Im(if (2)j (βj2, θ)

]
π

}
exp

{
− i
2
arg
[
if (2)j (βj2, θ)

]}
. (22)

As θ tends to ±θc , the order of R changes from 1/2 in (20) and (22) to 1/3 in (21) and the behavior of these
approximations differs radically, a uniform approximation valid for ||θ| − θc| < V with V a finite value is desired.

4 Uniform asymptotic expansions of ship waves
We apply the CFU method to develop the uniform asymptotic of interfacial waves η in the far field. A cubic transform of
the variable of integration β to t is defined

ifj(β, θ) = −
( t3
3
− u2j t

)
+ ρj . (23)

It follows that

η =

2∑
j=1

eRρj
∫ ∞e4πi/3

∞e2πi/3
G0j(t, θ) exp[−R(

t3

3
− u2j t)]dt (24)

where

G0j(t, θ) =
Fλ

2π

a20(β)Nj(β)

2a20(β)− γ2
exp[−εa1(β)R cos θ]

dβ
dt

(25)

A Bleistein sequence is established to replace the integrand G0j(t, θ)

G0j(t, θ) = b0j + b1jt+ (t2 − u2j )H0j(t, θ). (26)

We obtain the uniform asymptotic expansions of η for large R

η ≈
2∑
j=1

2πieRρj
[ b0j
R1/3

Ai(R2/3u2j ) +
b1j
R2/3

Ai′(R2/3u2j )
]
, (27)

where

ρj = i(fj(βj1, θ) + fj(βj2, θ)/2, (28)

b0j =
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(29)
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dQj
dβ
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(
dβ
dt

)2 ∣∣∣
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+Qj

∣∣∣
β=βjc

d2β
dt2
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t=0

, (θ = ±θc),

(30)

ui =

 exp(πi/2)[(fj(βj1, θ)− fj(βj2, θ))3/4]1/3, (|θ| < θc),
0, (|θ| = θc),
exp(πi)[Im(fj(βj1, θ)− fj(βj2, θ))3/4]1/3, (π/2 > |θ| > θc).

(31)

with

Qj =
Fλ

2π

a20(β)Nj(β)

2a20(β)− γ2
exp(−εa1(β)R cos θ), (32)



dβ
dt
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 exp(−πi/2)
∣∣∣2uj /f (2)j (βj1,2, θ)
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exp[−(π ± θT )i/2]
∣∣∣2uj /f (2)j (βj1,2, θ)
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(33)
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t=0

= exp(3πi/2)
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]1/3
, (θ = ±θc), (34)

d2β
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∣∣∣
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= f
(4)
j (βjc,±θc)

/[
541/5f

(3)
j (βjc,±θc)

]3/5
, (θ = ±θc). (35)

In (32), the phase θT is defined as arg[i/f (2)j (βj2, θ)] and contained in [−π, π].

5 Discussions
The interfacial viscous waves present the same behavior as the Kelvin wave described by Ursell (1960). The cusp lines
separate the oscillatory wave motion inside Kelvin wedge from an exponentially small motion outside the Kelvin wedge,
and the transition region near the cusp line can be described by the Airy integral and corresponds to a coalescent pair of
saddle points in the Fourier integral. By the use of CFU method, a uniform asymptotic expansion spanning the whole
region is obtained. Using appropriate expansions for the Airy function , (27) is consistent with (20) for |θ| > θc and (22)
for |θ| < θc .

It is found the transverse waves are obvious in the Kelvin wedge and the largest waves are near the cusp lines in
Figs.1-4. As the ratio of density increases ,the wave amplitude becomes small as indicated in Figs. 1-2. As the viscosity
of the lower fluid decreases, the wave amplitude becomes large and much more diverge waves are found near the cusp
lines as illustrated in Figs. 3-4.

Figure 1: Contours of the wave elevation with
σ = 0.01, ε = 1.0e− 4, z0= 0.5.

Figure 2: Contours of the wave elevation with
σ = 0.3, ε = 1.0e− 4, z0= 0.5.

Figure 3: Contours of the wave elevation with
σ = 0.2, ε = 3.0e− 3, z0= 0.4.

Figure 4: Contours of the wave elevation with
σ = 0.2, ε = 1.0e− 7, z0= 0.4.
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