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Highlights:

• A proof is given illustrating that structures satisfying
the John condition in two-dimensions cannot transmit
all incident wave energy.

• Computations performed for submerged steps and
horizontal plates illustrate configurations for which in-
cident waves are totally transmitted beyond the struc-
ture without a change of phase.

1. Introduction

The term ‘cloaking’ in the linearised water wave con-
text has been used to describe the process by which
a structure subject to small amplitude time-harmonic
incident waves is rendered invisible to the observer in
the far field by the addition to/alteration of the ge-
ometry in a finite region outside that structure. Thus,
the cloaked structure is designed to scatter no wave
energy in any polar direction and the far-field observer
sees only the incident wave field. Porter & Newman
(2014) have provided compelling numerical evidence
that a vertical circular cylinder extending uniformly
throughout the depth can be cloaked using an an-
nular region of variable bathymetry, whilst Newman
(2014) has explored the use of circular arrangements
of surface-piercing cylinders to cloak a central vertical
cylinder.
In this paper our main consideration is the related

two-dimensional problem. Now a system of fixed or,
perhaps, moving two-dimensional structures is said to
be cloaked in small amplitude time harmonic water
waves if there is no reflected wave and the amplitude
and phase of the transmitted wave is the same as that
of the incident wave. That is, the structures appear
transparent to the incident wave field when observed
in the far-field.
The purpose of this work is two-fold: (i) to pro-

vide general conditions under which cloaking cannot
be achieved; and (ii) to provide numerical examples of
cloaking. Theoretical results will be presented below
for an infinite depth fluid but their generalisation to a
fluid of constant finite depth is also possible.

2. Statement of the problem

We adopt two-dimensional Cartesian coordinates (x, z)
with z = 0 in the mean free surface and the fluid ex-

tending into z < 0. The fluid is incompressible and
inviscid and the flow irrotational. Small amplitude
waves of a single radian frequency ω are incident from
x = −∞. After removing a time-harmonic dependence,
the velocity potential Φ(x, z), used to describe the flow,
satisfies

∇2Φ(x, z) = 0, in D, (1)

the domain occupied by the fluid,

∂Φ

∂z
−KΦ = 0, on F , (2)

the free surface, where K = ω2/g,

∂Φ

∂n
= 0, on B, (3)

the union of wetted surfaces of any rigid bodies in the
fluid and

|∇Φ| → 0, as z → −∞. (4)

In order that the incident wave is totally transmitted
it is required that

Φ(x, z) ∼

{

eiKx+Kz, x→ −∞,
T eiKx+Kz, x→ ∞,

(5)

where energy considerations imply |T | = 1. There
are many well-known examples of structures satisfy-
ing these transmitting conditions (specifically |T | = 1)
including wave scattering by submerged circular cylin-
ders, pairs of vertical barriers, submerged horizontal
plates and topographical features such as ripple beds
and sea mounts, when the finite depth variation of the
equations above is included.
For cloaking, however, it is additionally required that

T = 1. That is, there is no phase shift in the transmit-
ted wave.

3. A non-transmitting result for John

bodies

Let the two-dimensional system of bodies satisfy the
so-called John condition. That is B intersects F in
at most 2 points, say x = ±a, z = 0 and vertical
lines drawn downwards from those two points from the
free surface do not intersect any other bodies; see Fig.
1. Let F∓ be portions of the free surface given by
{−M < x < −a} and {a < x < M} and D∓ the fluid
below each free surface. Let DB be the remaining fluid
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Figure 1: Schematic of a system of bodies satisfying
the John condition

region surrounding B in −a < x < a and such that DB

is a non-zero region.
Application of Green’s first identity to Φ and Φ in

D− ∪ DB ∪ D+ ⊂ D, before taking the limit M → ∞
and using |T | = 1, gives

0 =

∫

DB

|∇Φ|2dV +

lim
M→∞

[

∫

D+∪D−

|∇Φ|2dV −K

∫

F+∪F−

|Φ|2dx

]

. (6)

By analytic continuation, in order to satisfy (5), Φ can-
not be equal to a constant everywhere in DB and so
the first term in (6) is positive and hence

lim
M→∞

[

∫

D+∪D−

|∇Φ|2dV −K

∫

F+∪F−

|Φ|2dx

]

< 0. (7)

Note the strict inequality, which will be important.
Let b > a and apply Green’s second identity to Φ

and eiK(x−b)+Kz in x ≥ b, −∞ < z < 0. Both func-
tions represent outgoing waves at infinity and it follows
that the only contribution comes from the line x = b,
resulting in

∫ 0

−∞

[

∂Φ

∂x
eKz − iKΦeKz

]

x=b

dz = 0. (8)

Integration by parts followed by the use of the Cauchy-
Schwarz inequality gives

|Φ(b, 0)|2 ≤
[

∫ 0

−∞

∣

∣

∣

∣

∂Φ

∂z
− i

∂Φ

∂x

∣

∣

∣

∣

2

x=b

dz

]

[
∫ 0

−∞

e2Kzdz

]

. (9)

For two complex numbers A and B, |A+B|2 = 2(|A|2+
|B|2)− |A−B|2 ≤ 2(|A|2 + |B|2) and applying this to
the first integrand in (9) gives

∣

∣

∣

∣

∂Φ

∂z
− i

∂Φ

∂x

∣

∣

∣

∣

2

≤ 2|∇Φ|2. (10)

Combining this result with (9) gives

K|Φ(b, 0)|2 ≤

∫ 0

−∞

|∇Φ|2x=b dz (11)

and integrating over a < b < M shows that

∫

D+

|∇Φ|2dV −K

∫

F+

|Φ|2dx ≥ 0. (12)

Applying the same arguments as above to the region
x < −a starting out with a point b < −a results in a
second inequality in the form of (12) but with D− and
F− replacing D+ and F+. Summing these two results
and letting M → ∞, before comparing with (7) re-
sults in a contradiction. Thus the original assumption
that |T | = 1 cannot hold and it is shown that systems
of bodies satisfying the John condition can never be
totally transmitting and hence can never be cloaking
structures.
The same conclusion can be drawn for a system of

bodies satisfying the John condition in constant finite
depth using the same type of approach, although there
is some additional algebraic complexity.

4. Wide-spacing conditions for cloaking

Consider first a two-dimensional structure which scat-
ters normally-incident waves which is centred around
the line x = 0 such that far enough to the left (or
right) of x = 0 the depth is constant and equal to h1
(or h2). Let potentials associated with waves incident
from x = −∞ and x = +∞ be denoted by Ψ1(x, z)
and Ψ2(x, z). Then, in the far field,

Ψ1(x, z) ∼

{

t1e
ik2xψ2(z), x→ ∞

(eik1x + r1e
−ik1x)ψ1(z), x→ −∞

and

Ψ2(x, z) ∼

{

(e−ik2x + r2e
ik2x)ψ2(z), x→ ∞

t2e
−ik1xψ1(z), x→ −∞

where ri and ti are complex reflection and transmis-
sion coefficients, ki satisfies the dispersion relation
K = ki tanh kihi and

ψi(z) = N
−1/2
i coshki(z + hi) (13)

where Ni =
1
2 (1+ sinh(2kihi)/(2kihi)). Then it is well

known (e.g. Newman (1965)) that

(k1h1)t2 = (k2h2)t1, arg(t1) = arg(t2) ≡ δ, (14)

say, and

δ1 + δ2 = 2δ ± π, where ri = |r|eiδi (15)

in addition to |r|2 + |t1t2| = 1.
Imagine now an opposing pair of such scatterers

which are centred around x = ±b and symmetric in
the line x = 0. Far to the right/left of the scatterer at
x = ±b the fluid is of constant depth h1 and in between
the two scatterers the fluid is of constant depth h2. On
the assumption that k2b ≫ 1 and evanescent wave in-
teractions between the two scatterers are negligible, the



wide-spacing approximation (Newman (1965)) can be
used to give the transmission coefficient, T , for waves
on the complete arrangement given by

T =
t1t2e

2i(k2−k1)b

1− r22e
4ik2b

=
(1− |r|2)e2i(δ+(k2−k1)b)

1− |r|2e2i(δ2+2k2b)
(16)

after using the relations above. It follows that for
cloaking (T = 1) two conditions are required:

δ2 + 2k2b = nπ

δ + (k2 − k1)b = mπ

}

n,m ∈ Z. (17)

For transmitting (|T | = 1) only the first condition is
needed.

5. Numerical examples of cloaking

5.1 A submerged horizontal plate

We consider a thin horizontal plate of length 2b sub-
merged to a depth h2 in water of depth h1. According
to the wide-spacing theory of §4, we require only the
phases of the reflection and transmission coefficients for
a submerged semi-infinite plate with one end at x = 0.
This problem has an exact solution which is found, for
example, using the Wiener-Hopf technique (e.g. as in
Linton & McIver (2001)) and results in

δ2 = −2f(k2)± π, δ = f(k1)− f(k2)± π (18)

where

f(s) = (s/π)(η ln(η/h1) + h2 ln(h2/h1))−
1
2π

+

∞
∑

n=1

(

tan−1(s/k2,n)− tan−1(s/k1,n)

+ tan−1(sη/nπ)
)

(19)

where η = h1 − h2, and ki,n are positive roots of K =
−ki,n tan ki,nhi.
Exact results for the scattering of waves by a sub-

merged horizontal plate of length 2b in either finite or
infinite depth can be found using a number of meth-
ods, all eventually requiring numerical computation.
Here, we have implemented a new method based taking
Fourier transforms in x which leads to an an integro-
differential equation for the unknown jump in the po-
tential P (x) = Φ(x,−h−2 )−Φ(x,−h+2 ), say, across the
plate expressed as

k1e
ik1x =

1

2π

d2

dx2

∫ b

−b

P (x′) log |x− x′|dx′

+
1

2π

∫ ∞

−∞

− l2E(l)eilx
∫ b

−b

P (x′)e−ilx′

dx′dl (20)

for |x| < b in terms of a principal-value integral, with

E(l) =
2 sinh(lη)(l sinh lh2 −K cosh lh2)

l(l sinh lh1 −K cosh lh1)
−

1

|l|

having a pole at l = k1. An approximation to (20) is
implemented, first by expanding

P (x) =

∞
∑

n=0

αnpn(x/b), |x| < b (21)

where αn are coefficients to find, with

pn(t) =
einπ/2

π(n+ 1)
(1 − t2)1/2Un(t) (22)

defined in terms of second-kind Chebychev polynomi-
als, Un(t), and incorporating the expected square-root
behaviour as the ends of the plate are approached. Us-
ing (21) in (23) before multiplying through by p∗m(x/b)
and integrating over −b < x < b, a process character-
ising the Galerkin method, leads to the real algebraic
system of equations

αm

2π(m+ 1)
+

∞
∑

n=0

αnKmn = Fm, m = 0, 1, . . . (23)

where

Fm = Jm+1(k1b) (24)

and

Kmn =
1

2π

∫ ∞

−∞

− E(l)Jm+1(lb)Jn+1(lb) dl. (25)

We note that: (i) E(l) ∼ e−2|l|min{h2,η} as |l| → ∞
and so the integrals (25) are rapidly convergent; (ii)
Kmn = Knm and Kmn = 0 if m+n is odd which allows
(23) to be decoupled into even and odd systems; (iii)
the solution does not require the roots, ki,n, n ≥ 1 of
the dispersion relation.
The conditions for cloaking turn out to require

∞
∑

n=0

α2nF2n =
∞
∑

n=0

α2n+1F2n+1 = 0. (26)

Numerical solutions of (23) converge rapidly with
increasing truncation size (dependent on wavenumber)
and typically fewer than 10 terms are sufficient to guar-
antee 6 decimal place accuracy. Results for infinite
depth are most easily found by explicitly taking the
limit h1 → ∞.
The conditions for cloaking are shown in Fig. 2(a,b).

Wide-spacing computations satisfying (17) with (18)
are given by dots, whilst lines depict exact results sat-
isfying (26). The agreement between the two is gener-
ally good although the wide-spacing approach neglects
interactions underneath the plate which can have a
significant effect. The plots show the variation of (a)
h2/h1 and (b) k2b both with b/h2, the dimensionless
length of the plate. The filled-in circles show the exact
infinite depth results. Families of results emerge, each
family associated with a number of wavelengths over
the plate, characterised here by k2b.
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Figure 2: Parameter variations for transparency of a
submerged plate. Lines and symbols show exact and
wide-spacing results.

5.2 A submerged step

Using integral equation methods outlined in Porter
(1995), we have also considered wide-spacing and exact
results for cloaking of a rectangular step of length 2b
rising from a depth h1 to a depth h2. Cloaking results
are shown for the step in Fig. 3(a,b) in the same for-
mat as used in Fig. 2(a,b). As the geometry of the step
is similar to that of the submerged horizontal plate, it
is unsurprising that the two sets of results are similar.
However, in this example the wide-spacing approxima-
tion is always in extremely close agreement with the
exact results as all fluid interactions take place over
the step here.

6. Summary and further work

The numerical results suggest that transparency, or
cloaking, is only possible if the structure is sufficiently
long compared to its submergence and for high enough
frequencies (here b/h2 > 10 and k2b > 5). Other
results to be shown at the workshop will include the
effect of breaking the symmetry and, perhaps, three-
dimensional extensions. Efforts to extend the proof of
the John condition to three-dimensions and produce
existence results in more general settings are ongoing.
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Figure 3: Parameter variations for transparency of a
submerged step. Lines and symbols show exact and
wide-spacing results.

References

1. Porter, R., & Newman, J.N., 2014, Cloaking
a vertical cylinder in water waves using variable
bathymetry. Submitted to J. Fluid Mech.

2. Newman, J.N., 2014, Cloaking a circular cylinder
in waves. Submitted to Eur. J. Mech. B/Fluids.

3. Newman, J.N., 1965, Propagation of water waves
past long two-dimensional obstacles. J. Fluid
Mech. 23 23–29.

4. Linton, C.M. & McIver, P., 2001, Handbook
of Mathematical Techniques for Wave/Structure
Interactions CRC Press.

5. Porter, R., 1995, Complementary methods and
bounds in water waves. PhD Thesis, University of
Bristol.


