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Highlights

• Development of two strategies to model nonlinear waves propagating over variable bathymetry with HOS method.

• Presentation of a validation case to assess accuracy and efficiency of both approaches which are compared.

Introduction

Modeling surface gravity waves is a major concern in ocean engineering, and especially in the field of marine renewable
energy. These marine structures (wave and tidal energy converters, offshore wind turbines, . . . ) are intended to be
installed in limited water depth, where the influence of variable bathymetry is very significant on local wave conditions.

In this paper two different schemes for modeling bathymetry in the High-Order Spectral (HOS) method are
presented. This highly non-linear potential model has been initially developed by West et al. [9] and Dommermuth
& Yue [3] for a flat bottom and extensively validated for different configurations. A few HOS studies [5] consider a
variable bathymetry, but more has been done in Dirichlet to Neumann Operator method (DNO) [2, 8, 4]. Schäffer
[7] proved that HOS and DNO methods are identical thus we propose to characterize these different approaches. The
first presented scheme resolves the bottom condition without any approximation whereas the second scheme [5] uses
the boundary condition by expanding the surface potential in Taylor series with respect to the mean water depth.

These two schemes are presented here in details and then compared on a validation case considering propagation
of nonlinear regular waves. A comparison of their accuracy and efficiency is made with respect to parameters of the
problem (steepness, relative water depth, bottom variation . . . ).

1 Methods and Algorithms

1.1 Hypothesis and formulation of the problem

A 2D rectangular fluid domain with Cartesian coordinate system is considered. The z axis is vertical and oriented
upwards, with the level z = 0 corresponding to the mean water level. z = η (x, t) represents the free surface elevation,
h the total depth, h0 the mean depth and β the bottom variation, such as −h (x) = −h0 +β (x) (cf Fig.1). We assume
periodic boundary conditions in the horizontal plane so that the domain is considered infinite.

A potential flow formalism is used (incompressible and inviscid fluid, irrotational flow). Given these assumptions,

the velocity field ~V derives from a potential ~V (x, z, t) = ~∇φ and the continuity equation becomes the Laplace equation
in the fluid domain:

∆φ = 0 (1)

Following Zakharov [10], both fully nonlinear free-surface boundary conditions (kinematic and dynamic) are written

in terms of surface quantities η and φ̃:
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on z = η (x, t) (3)

with φ̃ (x, t) = φ (x, z = η, t) standing for the free surface velocity potential and ∇ the horizontal gradient.

To account for the time evolution of the quantities of interest η and φ̃ one only needs to evaluate the vertical
velocity at the free surface W (x, t) = ∂φ

∂z (x, z = η (x, t) , t). Note that HOS method was initially developed for a flat
bottom, while here the bottom boundary condition reads:

∂φ
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= 0 on z = −h0 + β (x) (4)



To account for a variation of the bathymetry, an additional potential is introduced following [8, 4, 5]. The total
potential φtot solution of the wave propagation over variable bottom problem is expressed as φtot = φh0

+ φβ :

• φh0 is solution of the problem at constant depth h0 and therefore satisfies a Neumann condition on z = −h0:
∂φh0

∂z (x, z = −h0, t) = 0

• φβ allows the definition of the correct bottom boundary condition (Eq.(4)) and satisfies a Dirichlet condition on
z = 0: φβ (x, z = 0, t) = 0

These potentials are defined on a specific set of basis functions with kj1 the wavenumbers and Aj1 , Bj1 the modal
amplitudes:
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φβ (x, z, t) =
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1.2 High-Order Spectral Method

The HOS model [9, 3] is based on a pseudo-spectral method where the velocity potential is expressed as a truncated
power series of components φ(m) for m = 0 to M (M standing for the order of the method). Then, the potential taken
at the free surface is expanded in a Taylor series with respect to the mean water level z = 0, cf Eq.(7). Combining
these two expansions gives a triangular set of Dirichlet problems for the components that can be solved by means of
a spectral method, taking advantage of the use of Fast Fourier Transforms (FFTs).
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Introducing the two potentials φh0
and φβ , one more equation is needed to obtain their modal amplitudes at each

order m : A
(m)
j1

(t) and B
(m)
j1

(t) respectively (cf Eqs.(5) & (6)). Those potentials are explicitly linked through the
bottom boundary condition and two approaches have been developed to close the problem.

Once A
(m)
j1

(t) and B
(m)
j1

(t) are computed, the vertical velocity on the free surface W (x, t) can be obtained. The
same kind of double expansion is used both for the potential and for its vertical derivative. Then, free surface boundary
conditions Eqs.(2) & (3) allows to advance in time the solution of the problem φ̃tot and η.
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1.3 Exact method

The first approach used to take into account the bottom boundary condition is to directly substitute the expressions
of φh0 and φβ in this condition Eq.(4). One obtains, at each order m:
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In this case, no assumption is made on the magnitude of β and the bottom condition is solved exactly. Nevertheless, one

has to note that the modal amplitudes B
(m)
j1

(t) depend actually on the location x. Consequently, the decomposition

Eq.(6) relies on modal amplitudes depending on x: B
′(m)
j1

(x, t) = A
(m)
j1

(t) .D (x), which prevents from the use of
FFTs: this is a direct method. The associated computational cost is expected to be very important especially for 3D
simulations, leading to the development of a second method presented hereafter.

1.4 Approximate method

The second approach considered to impose the bottom boundary condition Eq.(4) is the one used in Liu & Yue [5].
Another expansion of φtot is proposed with respect to the mean water depth z = −h0 for this boundary condition,
assuming β and ∂β

∂x to be small parameters. This leads to a new triangular system that reads:

m = 1 :
∂φ

(1)
tot

∂z
(x,−h0, t) = 0 (10)

m = 2, ..M :
∂φ

(m)
tot

∂z
(x,−h0, t) =

m−1∑
l=1

∂

∂x

[
βl

l!

∂l−1

∂zl−1

(
∂φtot
∂x

)(m−l)
]
z=−h0

(11)



Then, at each order m, this gives the relationship between B
(m)
j1

and known quantities: A
(m)
j1

and their previous
orders. The main point in this procedure is the possible use of FFT and its interesting computational costs, in contrast
with the exact direct method. In the following, the order of truncation of power series (at free surface and bottom) is
assumed to be the same, following [5].

2 Validation

2.1 Test case

The main objective of this paper is to assess the domains of applicability of both approaches. The proposed validation
case is the simple propagation of a non-linear regular wave over flat bottom (see Fig.1). The non-linear initialization

of η and φ̃ is provided by the stream function solution of Rienecker & Fenton [6] build for a constant water depth
h. The complexity of this test case relies on the definition of the potential φh0

at the ’mean’ depth h0, which differs
from h. Then, the second potential φβ has to take care of this difference in water depth, the total potential φtot being
the solution of the problem at ’total’ water depth h = h0 − β. This depth variation β is introduced artificially and is
assumed to be constant for this study.

This validation case allows to characterize both approaches in terms of accuracy and computational efficiency.
These may also be compared to the initial HOS model which has been validated on such test case [1]. Note that this
is intended to be a complicated case since an inadequate depth is imposed in all the domain. Thus, it is assumed that
if the results are correct on this complex configuration, the method is validated.

In order to advance in time unknowns on the free surface η and φ̃, one has to evaluate the vertical velocity W (x, t).
This validation case proposes to study the error εw = W−WRF

WRF
made on the evaluation of this vertical velocity at the

initial time step (WRF represents the reference vertical velocity from Rienecker and Fenton [6]). This is an appropriate
measure of the accuracy of the model and it has been shown that if this error is limited, the propagation will take
place properly in the model [1].

The regular wave is described by its steepness k.a (k the wavenumber and a the amplitude) and its relative water
depth k.h. The influence of these wave parameters is investigated as well as the non-dimensional variation of the
bottom β

h0
and numerical parameters: number of nodes N and HOS order M .

Figure 1: Validation case
Figure 2: Exact method: k.h = 0.916, k.a = 0.2, all
β
h0

. Error on W (log (εw)) as function of N and M .

2.2 Results

2.2.1 Exact method

It appears that the behavior of the exact method is identical to the original HOS model, whatever the variation of the

bathymetry imposed
(
β
h0

)
. This is due to the fact that one solves the exact bottom boundary condition which allows

to keep the convergence properties of the original HOS model as shown in Fig.2: exponential convergence of spectral
method with respect to number of point N and HOS order M . Thus, this method allows simulations up to highly
non-linear waves and very limited water depth as shown in [1]. However, as indicated before, the computational effort
largely increases with this approach, compared to the original HOS scheme.

2.2.2 Approximate method

Contrary to the exact method, the behavior of the approximate one depends strongly on the value of the bottom
variation β

h0
. Figure 3 presents the convergence on W with respect to the number of points N and HOS order M .

The original HOS method, i.e. β
h0

= 0% and consequent bottom variation β
h0

= 25% are compared. It is interesting
to notice that this approach converges for this magnitude of bottom variation, even if, as expected, this convergence is
slower than the original method. However, note that the spectral properties (exponential convergence) are conserved.



Different set of parameters have been tested with some results presented in Tab.1 at fixed discretization and HOS
order: N = 64, M = 8. One can see that the error on the vertical velocity depends strongly on the three parameters
k.a, k.h and β

h0
. Errors rise with steepness, bottom variation and for decreasing water depth. However, as shown

previously, convergence properties are globally conserved in this range of parameters, showing the applicability of this
approximate method to treat classical problems (and reminding that the validation case used is very demanding). At
the same time, the computational effort is greatly reduced compared to exact method, making large 3D computations
accessible.

Figure 3: Approximate method: k.h = 0.916, k.a = 0.1.
Influence of β

h0
on error on W (log (εw)) as function of N

and M . Low-surface: β
h0

= 0%, high: βh0
= 25%

k.h=0.916
β/h0 k.a=0.01 k.a=0.05 k.a=0.1
0% 1.7 10−14 4.0 10−10 2.5 10−7

5% 4.8 10−12 1.8 10−9 3.0 10−7

25% 5.5 10−8 2.6 10−6 3.4 10−5

50% 3.9 10−6 1.1 10−4 1.2 10−3

k.a=0.1
β/h0 k.h=0.67 k.h=3 k.h=10
0% 5.7 10−8 6.3 10−9 6.2 10−9

5% 2.2 10−7 6.3 10−9 6.2 10−9

25% 3.9 10−5 1.8 10−6 2.6 10−7

50% 1.1 10−3 3.8 10−4 1.8 10−4

Table 1: Relative error on W for the
approximate method, N = 64, M = 8

When dealing with highly non-linear waves (k.a = 0.2−0.4), stability problems will occur for large bottom variation
or shallow water. For instance, for k.h = 0.916 and β

h0
varying from 0% to 25% this method converges for all k.a,

while for β
h0

= 50%, this method doesn’t converge for k.a ≥ 0.2.

A detailed study will be provided at the workshop to establish the exact application range of this approximate
method. In addition, an in-depth comparison of computational effort at given accuracy between both exact and
approximate method will be provided. Nevertheless, we are confident in the fact that a lot of combinations of (k.a,
k.h, β

h0
) can be computed, with lower computational time. Finally, a validation case of propagating waves over an

underwater bar ([8] [4]) will also be performed and presented at the workshop.
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[1] F. Bonnefoy, G. Ducrozet, D. Le Touzé, and P. Ferrant. Advances in Numerical Simulation of Nonlinear Water
Waves, volume 11 of Advances in Coastal and Ocean Engineering, chapter Time-Domain Simulation of Nonlinear
Water Waves Using Spectral Methods, pages 129–164. World Scientific, 2009.

[2] W. Craig, P. Guyenne, D.P. Nicholls, and C. Sulem. Halmitonian long-wave expansions for water waves over a
rough bottom. In Proc. R. Soc. A, volume 461, pages 839–873, 2005.

[3] D.G. Dommermuth and D.K.P. Yue. A high-order spectral method for the study of non-linear gravity waves. J.
Fluid Mech., 184:267–288, 1986.

[4] P. Guyenne and D.P. Nicholls. A high-order spectral method for nonlinear water waves over moving bottom
topography. J. Sci. Comput., 30:81–101, 2007.

[5] Y. Liu and D.K.P. Yue. On generalized bragg scattering of surface waves by bottom ripples. J. Fluid Mech.,
356:297–326, 1998.

[6] M. M. Rienecker and J. D. Fenton. A fourier approximation method for steady water waves. J. Fluid Mech.,
104:119–137, 1981.
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