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1. Introduction 

The hydrodynamics research group of Ecolé Centrale Marseille comprehensively investigated in a series of recently 

published studies the effect of tertiary interactions on the wave run-up on a vertical plate subjected to (initially) regular 

wave excitations (see e.g. [1-2]). The method they developed accounted for the continuous interactions between the 

incoming and the reflected (by the plate) waves that eventually change completely the wave field. To achieve that, the 

authors exploited the formulae proposed by Longuet-Higgins and Phillips [3] that describe the modification of the wave 

number and the change of the direction of the reflected waves. The studies presented in [1-2] accounted only for a confined 

wave field adapting the environment of a wave basin. Accordingly, Chatjigeorgiou and Molin [4] extended the existing 

theory to assimilate the conditions of an infinite wave field. That was achieved describing the plate as an elliptical cylinder 

with nearly zero semi-minor axis and the associated effort avoided the reflections due to the lateral walls of the confined 

wave field which for long distance travelling waves eventually modify the wave run-up on the plate. The investigation of 

the third-order interactions is still under way as there are many more interesting features that require proper answers such as 

for example the disability to achieve steady-state conditions for large wave steepness [5]. In the present study we advance 

one step further investigating the dynamic behavior of the plate subjected to third-order interactions. In the present initiatory 

effort we employ linear theory for the structural dynamics of the plate assuming that it has hinged edges and we emphasize 

on the differences between the linear component on the wave run-up and the actual (final) run-up on the plate after a steady-

state condition has been established and the wave field has obtained a steady pattern. The hydrodynamic phenomenon is 

treated assuming the infinite wave field option [4].  

 

2. The diffraction problem in the infinite wave field 

The basics of the followed methodology have been extensively analyzed in reference [4] where the interested reader is 

referred. Succinctly, the plate is simulated as a degenerated elliptical cylinder with nearly zero semi-minor axis. The 

“elliptical” plate is considered stationary and subjected to regular waves with amplitude AI and frequency ω in an infinite 

water depth. Under these conditions the incident and diffracted components of the velocity potential will be given by  
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where g is the gravitational acceleration, k is the wavenumber, u and v are the elliptic coordinates, α is the angle of 

incidence, q is the Mathieu parameter q=(kaє/2)
2
, where a denotes herein the semi-major axis, є is the elliptic eccentricity, 

cem and sem are the even and odd periodic Mathieu functions and mMc , mMs are the even and odd modified Mathieu 

functions. The indices (1) and (3) denote the kind of the Mathieu functions. The unknown expansion coefficients of the 

diffraction component Bm and Cm are obtained by employing the zero velocity condition on the plate making use of the 

orthogonality relations of the even and odd periodic Mathieu functions. In fact, this is the first step of the global procedure 

that provides the linear solution and accordingly the linear wave run-up. Subsequently the reflected wave-filed interacts 

with the (continuously coming) regular wave train and the wave field is modified. At each stage the modified wave field is 

obtained by applying the parabolic system theory developed in Molin at al. [1-2]. The global procedure is put into an 

iterations process whilst, each iteration literally represented an interaction process. If the method is convergent, meaning 



 

that the wave run-up eventually stabilizes, the entire wave filed attains a steady state condition. As shown in Molin et al. [5] 

analyzing experimental results this is not always a fact as for large wave steepness the wave field changes continuously 

between specific patterns which accordingly are reflected on the wave run-up. Here, we investigate only convergent cases 

where convergent is achieved after a number of iterations. For long travelling waves, more iterations are required. A 

specific example of the wave run-up on a 10m plate after convergence is shown in the following Fig. 1.  
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Fig. 1. Wave run-up on a 10m plate. 

 

The assumed conditions that resulted in the calculations shown above correspond to wave period T=1.01s and wave 

steepness ε=kAI=2.5%. The origin of the wave train was assumed to be 200m ahead of the plate. For references, Fig. 1 

contains also the linear run-up (first iteration; dashed line). It can be easily seen that the final wave run-up is significantly 

larger that the (nearly uniform) linear one. The depicted data have been normalized by AI. Note that the third-order 

interactions method developed in [1-2, 4] takes into account the half plate assuming mirroring effects. The data shown in 

Fig. 1 have been artificially mirrored to the other half for solving the structural dynamics (hydroelastic) problem of the plate. 

The computation of the wave run-up allows the calculation of the potential on the plate and accordingly the hydrodynamic 

pressure.  

 

3. The dynamics of the plate 

The plate employed in [1-2, 4] was 10m long (including the mirror part), 2.33m height having draught 2m. Here the plate is 

considered hinged along all four edges. Linear theory is employed and the forced vibrations of the plate comply with the 

following governing equation 
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where w(y, z; t)  denotes the normal (bending) deformations of the plate, y and z are the horizontal and vertical Cartesian 

coordinates (fixed on the origin of Fig. 1), M is the mass per area of the plate and D=Eh
3
/12/(1-ν

2
) is the plate bending 

stiffness. Note that E is the Young’s modulus of elasticity, h is the thickness and ν is Poisson’s ratio. For a steel plate 

E=209GPa, the material density is 7850kg/m
3
, and ν=0.3. Here we assumed that h=3mm. In Eq. (3) p(y, z; t) denotes the 

hydrodynamic pressure obtained by wave run-up as ωρϕitzyp =);,(  where ρ is the water density and DI ϕϕϕ +=  is 

the total velocity potential [see Eqs. (1)-(2)]. The total velocity potential is written as )(/ yegiA kz
I ζωϕ −=  where )(yζ  is 

the wave run-up obtained according to the method developed in [1-2, 4]. Note that the origin of the vertical (z) coordinate in 

the previous relation is fixed on the free surface. Hence, in order to apply Eq. (3) z must be transformed in order to take into 

account the draught (f=2m) of the plate.  

A solution that satisfies the boundary conditions (zero bending moments and motions) of the perimeter of the plate is 

expanded as  
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where a and b now denote the length and the height of the plate. Using the regular assumptions of the linear theory we write 

{ }ti
mnmn eatA

ω−= Re)(  where amn are complex expansion coefficients depending on ω that need to be evaluated. 



 

Introducing Eq. (4) into Eq. (3) and making use of the orthogonality of trigonometric functions the complex expansion 

coefficients yield from the simple formula ( )22/ ωω −= mnmnmn Fa  where the eigen-frequencies ωmn are given by  
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and the coefficients Fmn are  
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Given the complicated form of the final run-up on the plate (see for instance Fig. 1), the integral in Eq. (6) is obtained 

numerically. Note that it was assumed that the hydrodynamic pressure above the draught dimension f (above the free surface) 

is zero. The computation of the complex expansion coefficients amn allows obtaining the values for the structural vibrations 

of the plate w(y, z; t) through Eq. (4). Clearly, the solution of the structural vibrations problem dictates the solution of the 

third-order hydrodynamic problem, namely it requires performing the computations described in [4].   

 

4. Numerical results  

Here we provide some numerical results for the conditions outlined in Sections 2 and 3. The wave-run up on the plate is 

shown in Fig. 1 for the linear (first-impact) problem and at the end of iterations after the steady-state condition has been 

established.  

 
Fig. 2. Bending vibrations of the plate w(y, z)/h at the first iteration (linear problem-first impact). 

 

The magnitudes shown in Figs. 2 and 3 have been normalized by the plate thickness h.  It is clearly seen that the final 

magnitudes (Fig. 3) are considerably larger than the original at the first impact. On the contrary at the first impact the 

deformations cover nearly the complete impacted area whereas when the phenomenon is stabilized the normal deformations 

are focalized at the center. The pattern evolves from nearly rectangular to elliptical. In addition the maximum deformations 

occur in the plate’s center although the hydrodynamic pressure obtain its maximum at the free surface (here at f=2m) from 

the bottom of the figures. It is noted also that the patterns are slightly asymmetrical with respect to the center (here at y=5m).  

The actual values of w(y, z) are relatively large compared to the plate thickness. Nevertheless, it should be noted that no 

stiffeners were assumed on the back surface of the plate. Although the present results were obtained by employing linear 

theory for the structural dynamics of the plate, it should be mentioned that the linear theory contributes the most on the final 

conditions.  

This work is ongoing. The next steps that have been identified by the authors will be: (i) use of more realistic 

connections, e.g. clamped ends and change of the expansion (4); (ii) use of nonlinear theory for the structural dynamics of 

the plate and (iii) employment of the finite elements approximation together with the third-order hydrodynamic interactions. 

During the workshop some new material will be presented that provide additional understanding of the investigated 

phenomenon, such as the loading exerted on the plate as well as details of the evolution of the wave run-up when it is 

impossible to achieve a steady state condition for large wave steepness.  



 

 
Fig. 3. Bending vibrations of the plate w(y, z)/h at the end of iterations (64

th
) that assure convergence 
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