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Highlights:
In this work we have obtained exact analytical formulae expressing the wave resistance of a two-dimensional body

that moves horizontally at constant speed in a channel of finite depth by the parameters of the downstream waves.

1 Introduction
Consider a two-dimensional body that moves horizontally from right to left at constant speed c in a channel of finite depth
h. Assume that in the body frame of reference the flow is steady. Then the wave train generated by the body also moves
from right to left with the same velocity c. In the body frame of reference we introduce Cartesian coordinates with the
x-axis lying on the bottom and the y-axis directed vertically upward. In this coordinate system far upstream we have a
uniform stream with velocity c and far downstream the train of steady periodic waves (Fig.1).
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Figure 1: Scheme of the steady flow

Due to the generation of waves the body experiences a resistance. In two-dimensional case the determination of this
resistance from properties of the wave train has been the subject of several investigations. The linear theory was first
presented by Lord Kelvin [1]. He derived that the wave resistance

Rx =
1

4
ρga2

[
1− 4πh/λ

sinh(4πh/λ)

]
, (1)

where ρ is the fluid density, g is the acceleration of gravity, λ is the wavelength and a = (hc−ht)/2 is the wave amplitude
(one half the vertical distance from the crest to the trough). For deep water this formula simplifies and takes the form

Rx =
1

4
ρga2. (2)

Wehausen and Laitone [2] have derived an exact resistance formula in terms of the vertical distribution of velocity in the
waves and downstream surface hight profile. This formula was later evaluated by Salvesen and von Kerczek [3] using
third-order Stokes wave theory.

Duncan [4] was the first to notice that if the properties of the nonlinear wave train far downstream are known, then it is
possible to evaluate the wave resistance exactly. Considering the infinite depth case and using the horizontal-momentum
equation and the results by Longuet-Higgins [5] he deduced that

Rx = cI + 3V − 4T, (3)



where I is the mean impulse, V and T are the mean potential and kinetic energies of downstream waves and all these
quantities being averaged per unit wave area. Numerical results of [5] and formula (3) allowed Duncan to obtain accurate
values of the wave resistance for arbitrary wave steepness.

Another important result of [4] is the formula

Rx =
1

4
ρga2

[
1− 3

2

(2πa)2

λ2

]
(4)

that generalizes that of (2) up to the forth power of the amplitude a. The equation (4) has been deduced by making use of
the mentioned above result of Wehausen and Laitone [2] and third-order Stokes wave theory.

The formulae (3) is correct only for deep water. The main goal of the presented work is to generalize (3) for water
of finite depth and to obtain numerically accurate values of Rx for any amplitude and depth. Besides, using the Stokes
method for computing waves on water of finite depth we present an effective algorithm that allows one to generate
analytical formulae for the wave resistance with any asymptotic accuracy.

2 Formulae for the wave resistance
Let the shape of the free surface be defined by the equation y = ys(x). We denote by φ(x, y) the potential of the

steady flow, then vx = ∂φ
∂x , vy = ∂φ

∂y are the components and v =
√
v2x + v2y is the modulus of the velocity vector. Far

downstream we introduce the following waves properties:
the increment of the potential in the wave

∆φ = φ(x+ λ, y)− φ(x, y);

the average fluid velocity at any horizontal level completely within the fluid

ca =
1

λ

x+λ∫
x

vx(x, y)dx =
∆φ

λ
;

the mean depth

D =
1

λ

x+λ∫
x

ys(x)dx.

A usual assumption in the theory of nonlinear periodic waves is that the phase velocity equals the average fluid
velocity ca in the steady motion (see e.g.[5]), then in the unsteady motion the average fluid particle velocity vanishes. In
this work we prove that for the waves generated by the moving body this assumption is not correct, i. e. c ̸= ca. Moreover
we strictly prove that the mean depths far upstream and far downstream are not equal, so there exists a defect of levels
∆h = h−D > 0.

Generally speaking, for the waves on water of finite depth there exist no physical conditions for finding the phase
velocity. So, a general form for the mean kinetic energy T of waves which propagate with the phase velocity cw is

T (cw) =
ρ

2λ

x+λ∫
x

dx

ys(x)∫
0

[(vx − cw)
2 + v2y]dy.

The general form for the mean squared bottom velocity in such an unsteady motion is

σ2(cw) =
1

λ

x+λ∫
x

[vx(x, 0)− cw]
2dx.

The potential energy V we define in an ordinary manner

V =
ρg

2λ

x+λ∫
x

[ys(x)−D]2dx.



By making use of results of Benjamin & Lighthill [6] and Longuet-Higgins [5] we establish that the wave resistance
Rx of any body can be found by either of two equivalent formulae:

Rx = 3V +
3ρg

2
(∆h)2 − ρ(gh− c2)∆h, (5)

Rx = 3V +
3ρg

2
(∆h)2 − 2T (c)− ρ

2
σ2(c)h. (6)

Consider the case of infinite depth studied by Duncan [4]. For this case ∆h → 0, c → ca, σ2(c)h → 0 and the
formula (6) takes a simple form

Rx = 3V − 2T. (7)

Taking into account the Levi-Civita result 2T = cI (see e.g. [5]), one can see that (3) is equivalent to (7).
For numerical computations it is convenient to use (5). Equation (5) includes four parameters: the potential energy V ,

the upstream level h, the defect of levels ∆H = h − D and the velocity of body c. Computing the potential energy V
and the mean level D is usual in the nonlinear wave theory, the question is how to determine h and c. Here the results of
Keady & Norbury [7] and Benjamin [8] turn out to be very helpful. Indeed, it follows from the Bernoulli equation and the
mass conservation law that h and c satisfy the relations

ch = Q, (8)

c2 + 2gh = 2R, (9)

where Q is the volume flux and R is the total head (Bernoulli constant).
The system of equations (8), (9) has been thoroughly investigated in [7], [8]. It has been established that the system

always has two solutions. For the first solution the Froude number F = c/
√
gh < 1 and for the second one F = c/

√
gh >

1. But from the Benjamin results [8] it is possible to deduce that for the second solution the wave resistance Rx < 0. In
our computations we reject this nonrealistic case and take into account only the first solution with F < 1. We should note
that the impossibility of Rx < 0 means that the body can generate nonlinear waves only if it moves with subcritical speed
c <

√
gh.

3 Numerical results
Accurate numerical results has been obtained by the method developed in Maklakov [9]. The method allows one to com-
pute waves of any steepness with accuracy of 10–11 decimal digits. In Fig. 2 and 3 we demonstrate the dependencies of
the defect of levels ∆h/λ, the difference between the squared phase speeds c2a and c2, and the wave resistance coefficient
Cx = Rx

ρgλ2 on the geometrical wave parameters D/λ and 2a = hc−ht

λ . For every given wave depth D/λ the computations
have been carried out by changing the wave steepness 2a from zero up to the highest wave.

4 Analytical formulae for the wave resistance
Besides numerical computations we present an effective algorithm that allows one to generate analytical formulae for the
wave resistance with any asymptotic accuracy. These formulae generalize those of Kelvin (1) and Duncan (4). To develop
the algorithm we have applied the Stokes method for computing waves on water of finite depth. The Stokes coefficients
have been found from the chain of quadratic equations equivalent to that deduced by Longuet-Higgins [10]. The chain
has been derives from Hamilton’s principle. After obtaining the Stokes coefficients we expand the wave drag Rx in the
series by the powers of the amplitude a. To improve the convergence we sum the series by using Padé approximants. For
the case of infinite depth the result is as follows

Rx =
ρgλ2

(2π)2
0.25ā2 − 2.6072ā4 + 9.023ā6 − 11.304ā8 + 2.9096ā10 + 0.932ā12 + 0.055819ā14

1− 8.9289ā2 + 24.282ā4 − 19.323ā6
, (10)

where ā = 2πa
λ . The formulae of this type give almost the same results as those calculated by the numerical method of the

work [9]. The graphical discrepancy can be seen only for very steep waves whose steepness is about 0.98% of the limiting
value. In Fig. 4 we present the comparison of analytical and accurate numerical computations for the case of deep water.
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Figure 2: The defect of levels ∆h/λ (on the left) and the difference between the squared phase speeds c2a and c2 (on the
right) versus the wave steepness 2a.
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Figure 3: The wave resistance coefficient Cx ver-
sus the wave steepness 2a for different depths.
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Figure 4: Comparison of analytical and numerical
results for deep water: 1 – Kelvin (2), 2 – Duncan
(4), 3 – method [9], points – (10).
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