
 IMPACT OF LIQUIDS OF DIFFERENT DENSITIES  

 

Y.A. Semenov
1
, G.X. Wu

1
, A.A. Korobkin

2
 

 
1
 Department of Mechanical Engineering University College London, London, UK 

2
 School of Mathematics, University of East Anglia, Norwich, UK  

E-mail: semenov@a-teleport.com, g.wu@ucl.ac.uk, a.korobkin@uea.ac.uk 

 
A two-dimensional self-similar flow generated, in particular, by plunging breaking water waves is considered. The interface 

between the liquids is considered as a solid surface which shape is determined from the condition that the pressure distribution on 

both sides of the interface is the same. An integral hodograph method is applied to solve the boundary-value problems for each 

side of the interface. The problem is reduced to a system of integro-differential equations that are solved numerically using the 

method of successive approximations. 

 

1. INTRODUCTION 

The collisions between liquids, or between a liquid and a 

liquid-like solid such as granular materials, at extremely 

high speeds is a commonly observed phenomenon in 

nature and various engineering applications. Examples 

include plunging breaking water waves, liquid drops 

impacting a free surface of the same or another liquid, 

debris, snow (avalanche), lava (volcano) entering liquid 

surface. Investigations and reviews of these phenomena 

were presented by Yarin [1], Thoroddsen, Etoh & 

Takehara [2], Kiger & Duncan [3], Tran et al. [4] and 

many other authors.   

 In the present study we consider the impact problem 

of liquids of different densities through two wedges, 

based on the velocity potential theory for the flow within 

each incompressible fluid. As observed in the case of 

impact of liquid with the same density (Howison, 

Ockendon, Oliver, Purvis & Smith [5], Semenov, Wu & 

Oliver [6]), splash jets are usually formed by the impact. 

The speed of the splash jet depends on the shapes of the 

colliding liquids. It may exceed their initial relative speed 

and cause secondary impacts. This presents one of the 

major obstacles to obtaining solution, together with the 

nonlinear boundary conditions on the unknown free 

surface shape. For collision of liquids with different 

densities  ,   considered here, the problem is further 

complicated by the unknown interface which separates 

the two fluids. The determination of the shape of the 

interface is based on the conditions that the pressure and 

the normal velocity of the flow are continuous across the 

interface, while the tangential velocity may be 

discontinuous. The developed methodology is also 

relevant for impact between a liquid wedge and the 

perforated or porous solid surface similar to that 

presented by Iafrati, Miloh & Korobkin [7] and Molin & 

Korobkin [8]. 
 The integral hodograph method [9, 10] is employed 

to derive analytical expressions for the complex velocity 

potential, the conjugate of complex velocity, and the 

mapping function. The problem is reduced to a system of 

integro-differential equations in terms of the velocity 

magnitude and the angle of the velocity direction relative 

to the liquid boundary and the interface, respectively. The 

solution of these equations is obtained by the numerical 

discretisation and iteration. The solution procedure has 

been validated by comparing the obtained results for the 

same density with those obtained from a different 

formulation of the boundary-value problem [6].  Various 

results are presented in the form of streamline patterns, 

the pressure and velocity distributions along the interface, 

angle of the splash jet. 

The asymptotic analysis has also been made for two 

liquid wedges with large density ratio, or / 1      

which corresponds to the problem of a wedge-shaped 

avalanche entering water at high speed.  

 

2. NONLINEAR ANALYSIS 

A sketch of the problem and the definitions of the 

geometric parameters are shown in Fig. 1a. The liquid 

wedges are assumed to be symmetric about the y  axis. 

Their half-angles are   and   respectively, densities 

  and   respectively. They move in opposite 

directions with V and V   respectively, and their tips 

meet at point A  at time 0t  , where the origin of the 

Cartesian coordinate system is chosen.  The impact 

problem is solved in each liquid wedge on each side of 

the interface OA  where the same normal velocity is used. 

The pressure continuity across  OA  is used to determine 

its shape.    

For a constant impact velocity of the liquid wedge, 

the time-dependent problem in the physical plane 

Z X iY   can be written in the stationary plane 

z x iy   in terms of the self-similar variables 

/ ( )x X Vt , / ( )y Y Vt , / ( )s S Vt  where V  is the 

velocity magnitude at infinity  BC  in the physical plane 
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and S  is the spatial length coordinate along the free 

surface.  

                    (a)                   (b)  

Figure 1. Sketch of the collision of two liquid wedges: 

(a) the physical plane; (b) the parameter plane 

corresponding to the lower liquid wedge.  

 

The complex velocity potential ( , ) ( , , )W Z t X Y t 

( , , )i X Y t  for self-similar flows is written in the form 

2( , ) ( )W Z t V tw z    (1) 

The problem is to determine the function ( )w z  which 

conformally maps the stationary plane z  onto the 

complex velocity potential region w . As shown in Fig.1b 

for the lower wedge while similar procedure can be used 

the upper wedge, we choose the first quadrant of the  

plane as the parameter region to derive expressions for 

the conjugate of the nondimensional complex velocity, 

/dw dz , and for the derivative of the complex potential, 

/dw d , both as functions of the variable  . Once these 

functions are found, the velocity field and the mapping 

function ( )z z   can be determined by integration of the 

ratio ( /dw d )/( /dw dz ). 

Conformal mapping allows us to fix three arbitrary 

points in the parameter region, which are O  (tip of the 

interface), BC  (at infinity), and  A (the stagnation 

point ),  as shown in figure 1b. In this plane, the positive 

part of the imaginary axis ( 0   , 0  ) corresponds 

to the free surface OB . The interval ( 0 1  , 0  ) of 

the real axis corresponds to the interface OA , and the rest 

of the positive real axis (1   , 0  ) corresponds 

to the symmetry line AC . The point 1   is the image 

of the stagnation point A  in the stationary plane z .  

The boundary-value problems for the complex 

velocity function, /dw dz , and for the derivative of the 

complex potential, /dw d , can be formulated in the 

parameter plane. Then, applying the integral formulae 

determining an analytical function from its modulus and 

argument, and from its argument on the boundary of the 

first quadrant [10], respectively, we obtain the following 

expression for the complex velocity and for the derivative 

of the complex potential.  
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where K is a real scale factor, 0 0( )v v    is the velocity 

magnitude at point O , 
1( ) tan ( / )n sv v    is the angle 

between the velocity vector and the free surface, and 
1( ) tan ( / )n sv v    is the angle between the velocity 

vector and the interface. The normal component of the 

velocity along the interface is Im( )i

nv ze  ,  where z  is 

complex conjugate coordinate and      is the slope to 

the interface, the tangential component of the velocity, 
sv , 

is determined from Eq. (2) and ( ) [ ( )] ( )s       .   

At time 0t  ,  the tip of the interface, point O , and 

the stagnation point A  coincide. The tip of the interface 

moves with the velocity of the liquid at point O  having 

the magnitude 0v  and the angle 0  with the x  axis. 

Thus, the length of the interface OA  is determining from 

the  equation 

*

( )

0

0

s

i s

Oz e ds v  . The functions ( )v   

and ( )   are determined from dynamic and kinematic 

boundary conditions which for an arbitrary self-similar 

flow take the form [9]:  
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By choosing in the Bernoulli equation with the 

reference point at the stagnation point A , putting there 

0S   and ( , ) 0AW Z t  , and  taking advantage of the self-



similarity of the flow, we can determine the pressure at 

any point of the flow region 

2
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The method of successive approximations is used to 

determine the interface. At each iteration the system of 

integro-differential equations determining the functions 

( )v  , ( )   and ( )   is solved using the iteration 

procedure. Solving the same problem for the upper liquid 

wedge, the pressure distribution along the upper side of 

the interface, *

pc

, is obtained. The iteration continues 

until the both lower and upper side pressure distributions 

becomes the same.   

 

     
                        (a)                                            (b)     

Figure 2. Streamlines for 10     at density ratio (a) 

/ 1    and (b) / 0.5   . The open circles 

correspond to the tips of the splash jets from each liquid 

 

In figure 2, streamlines are shown for liquid wedges 

with angle 10     at two different density ratios. For 

the case / 1    in Fig. 2a the flow obviously should be 

symmetric respect to x-axis, and the result shows the 

accuracy of computation for determining the interface. 

For the case of density ratio / 0.5    in Fig.2b the 

interface is pushed towards the heavier liquid. The tip of 

the lighter liquid is shared by its free surface and interface. 

However the tip of the heavier liquid is further out and is 

on its free surface only.   

The dotted lines in Fig. 2 and 3 show the free 

surfaces of the undisturbed wedges. The coordinates of 

the dotted lines  at 0x   shows the velocity of the liquid 

wedges at infinity. When V   is chosen as the reference 

velocity,  then V  is determined form the condition that 

the pressures at infinity for both wedges are the same.  

The streamlines for the angle 30  and 90    

are shown in Fig 3a at / 1   , and in Fig 3b at 

/ 0.5   . It is seen that for the both cases the tip is 

directed into the upper liquid and forms a closed cavity. 

    
                        (a)                                            (b)     

Figure 3. Streamline for 30   , 90    at density 

ratio (a) / 1    and (b) / 0.5   .  

 

Inspection of the results shows that for the ratio 

/ 0.5    the cavity slightly increased while the 

velocity of the lower liquid (shown by   coordindate of 

the dotted lines at x=0) is nearly doubled. The cavity 

formation and secondary impacts caused by direction of 

the splash jet for the case of / 1    were discussed in 

[6] and [11]. 

 

3. ASSYMPTOTIC ANALYSIS 

In this section, we consider the problem of liquid wedge 

impact with        . As the first step, we consider the 

flow corresponding to        . In such a case, the 

liquid of    is unaffected by that of  . It moves forward 

just like a rigid body. When       , its difference to 

the case of         is linearized and boundary 

conditions are imposed on the surface corresponding to 

       . 

 In the asymptotic analysis, the lower liquid is 

considered to be at rest, while the upper liquid has 

velocity V V V   . The velocity potential 
2 ( , )V t x y  in 

the self-similar variables ,x y  close to the vertex 

0, 1x y    can be presented in the local polar 

coordinates r  and  , where cosx r  , 1 siny r    , 

within   
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with undetermined coefficients n . The second term in 

this representation corresponds to the undisturbed liquid 

wedge or at        . The angle   is the deadrise 

angle of the rigid wedge, or the angle of its surface with x 

axis. Note that the local solution depends on the angle   

only through the coefficients n . The linear Bernoulli 

equation provides the pressure along the wedge surface, 

  , 
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This gives 
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The pressure gradient may  be  singular at the vertex if 

/ 6   and     . However, the pressure is finite at 

this point. 

 It is seen that the flow velocity in the heavy wedge 

may be singular at the vertex if the deadrise angle of this 

wedge is greater than 30 degrees. The exact flow 

behaviour from the asymptotic solution and its 

comparison with the solutions  of Eqs.(2) and (3) will be 

discussed in the workshop. 

The singularity of the velocity is of the same order as 

the singularity of the pressure gradient in the lighter 

liquid at the vertex. Integrating the kinematic condition 

on the interface between the liquids, we find that the 

deflection of the interface is also singular at the vertex. 

The order of the singularity is the same as that of the 

normal velocity. Therefore, an inner region should be 

introduced near the vertex, where the flows of both 

liquids are coupled. 

 

4. CONCLUSIONS 
We have presented a nonlinear solution to the self-

similar problem of an impact between liquid wedges of 

different densities. Particular attention is given to the 

splash jet containing both liquids whose quantities 

depends on the wedge angles of the liquids and their 

density ratio. It is found that the interface is pushed 

towards the heavier liquid. The tips of the two liquids 

with different densities are found to be at different places.   
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