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Highlights:

•With Green’s theorem, reciprocity relations are newly found for the waves around an asymmetric floating body freely
oscillating in waves. Correctness of those relations are confirmed by numerical computations.
• 2-D experiments are conducted to confirm the theory, measuring the reflected and transmitted waves, and a pratical

correction method for attenuation of the reflection wave is proposed.

1. Introduction

For the development of efficient floating breakwaters, a large number of theoretical studies have been made so far. As
a consequence, particularly for a symmetric floating body, some important properties of the reflection and transmission
waves are known [1]. On the other hand, for an asymmetric floating body, Bessho [2] proved for the diffraction problem
that (1) both amplitude and phase of the transmission wave are the same and (2) the amplitude of the reflection wave is
the same, irrespective of the incoming direction of incident wave.

Recently, by using Green’s theorem, Kashiwagi [3] has proved that the properties of (1) and (2) for a fixed asymmetric
body are also true even when the body is oscillating in an incident wave. These properties were also confirmed in
numerical computations using the wave Green-function method.

However, in real flows, since the energy dissipation due to the viscosity of fluid must exist, the properties proved on
the assumption of potential flow may not be satisfied. Therefore, in this study, we are carrying out 2-D experiments using
an asymmetric body to confirm how much the relations proved theoretically are satisfied in a real fluid of water. In the
experiment, the incident wave and reflection wave must be separated from the temporal wave data measured at some
upwave points of a body. This paper describes a device in the measurement for achieving that purpose and a correction
method for taking account of the decay of progressive wave in a 2-D wave channel.

2. Review of Reflection and Transmission Waves

The potential flow around a 2-D asymmetric floating body in regular incident waves is considered The wave-induced
motion of a body and associated fluid motion are assumed to be linear in the incident-wave amplitude and harmonic
in time with circular frequencyω of the incident wave. In what follows, all oscillatory quantities will be expressed in
complex form, with the time dependenceeiωt understood.
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Fig. 1 Reflection and transmission waves for a ‘positive’ incident wave incoming from the positivex-axis (left figure)
and for a ‘negative’ incident wave incoming from the negativex-axis (right figure).

Let us consider first the case of ‘positive’ incident wave (see the left in Fig. 1). Then the asymptotic expression of the
normalized velocity potential atx→ ±∞ andy = 0 may be written as follows:

φ+(x,0) ∼
 eikx + R+F e−ikx asx→ +∞

T+F eikx asx→ −∞
(1)

where
R+F = R+D − iKX+j H+j , R+D = iH+4

T+F = T+D − iKX+j H−j , T+D = 1+ iH−4

 (2)



Herek is the wavenumber satisfying the dispersion relation ofk tanhkh = ω2/g ≡ K, with h being water depth and
g gravitational acceleration.X+j denotes the complex amplitude of the wave motion in thej-th mode (j = 1 for sway,
j = 2 for heave, andj = 3 for roll). H±j ( j = 1 ∼ 3) andH±4 denote the Kochin functions associated with the far-field
radiated and scattered waves, respectively.R+ andT+ are defined as the coefficients of reflection and transmission waves,
respectively. Suffix D to these coefficients indicates the quantities for the diffraction problem; likewise suffix F indicates
the quantities for the case where a body is freely oscillating in an incident wave.

Second, as shown on the right of Fig. 1, we consider the case of ‘negative’ incident wave. In this case, the asymptotic
expression of the normalized velocity potential atx→ ±∞ andy = 0 may be written in the form

φ−(x,0) ∼
 T−F e−ikx asx→ +∞

e−ikx + R−F eikx asx→ −∞
(3)

where
R−F = R−D − iKX−j H−j , R−D = ih−4

T−F = T−D − iKX−j H+j , T−D = 1+ ih+4

 (4)

With preparation above, we consider Green’s theorem, which gives the following equation:∫
SH

(
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

)
dℓ =

K + h(k2 − K2)
2k2

[ (
ϕ
∂ψ

∂x
− ψ∂ϕ

∂x

)
y=0

]+∞
−∞

(5)

Here both potentialsϕ andψ are assumed to satisfy the same boundary conditions on the free surface and water bottom, but
not necessarily the same boundary conditions on the body surface (SH) and the radiation surface atx = ±∞. The square
brackets with superscript+∞ and subscript−∞ means the difference between the quantities in the brackets evaluated at
x = +∞ andx = −∞.

Consideringφ+ for ϕ andφ− for ψ, we can prove the first important relation:

T+F = T−F . (6)

This means that the transmission wave past an asymmetric body freely oscillating in an incident wave is independent of
the incoming direction of incident wave and must be the same in both amplitude and phase.

Next, consideringφ+ (complex conjugate ofφ+) for ϕ andφ− for ψ, the following relation can be obtained:

R−F T+F + R+F T−F = 0 . (7)

Combining (6) with (7) tells us another important relation that the amplitude of the reflection wave must be the same
irrespective of the incoming direction of incident wave, but the phase is different depending on the incoming direction of
incident wave.
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Fig. 2 Position of wave probes and associated notations.

3. Analysis Method in Experiment

The time history of the wave to be measured at a location between the wavemaker and a body includes both incident wave
and reflection wave. In order to separate these, as Godaet al. [4] proposed, we must measure the wave at least at two
different positions with certain distance at the same time. For enhancing the accuracy and reliability in the experiment
analysis, we propose a new method using the plural number (N) of wave probes and the least-squares method with
simultaneous measurements of the wave atN (> 2) different positions. As shown in Fig. 2, the wave probe located farthest
from the body is denoted as No. 1 and its position isx = x1 (< 0). Similarly the position of thej-th wave probe is denoted
asx j = x1 + ℓ j ( j = 1 ∼ N), whereℓ j is defined positive andℓ1 = 0.



Let us express the incident wave (ζI ) and the reflection wave (ζR) in the following form:

ζI = aI cos(ωt − kx+ θI )

ζR = aR cos(ωt + kx+ θR)

 (8)

where (aI , θI ) and (aR, θR) are the amplitude and phase of the incident wave and the reflection wave, respectively; these
are to be determined from the measurement.

The time history of the wave measured at thej-th position will be decomposed with the Fourier series, and let us write
the first harmonic component as

ζ j = (ζI + ζR)x=x j
≡ A j cosωt + Bj sinωt ( j = 1 ∼ N) (9)

From (8) and (9), it follows that

A j = αC cos(kℓ j) − αS sin(kℓ j) + βC cos(kℓ j) − βS sin(kℓ j) (10)

Bj = αC sin(kℓ j) + αS cos(kℓ j) − βC sin(kℓ j) − βS cos(kℓ j) (11)

where αC = aI cosϕI , αS = aI sinϕI , ϕI = kx1 − θI

βC = aR cosϕR, βS = aR sinϕR, ϕR = kx1 + θR

}
(12)

Applying the least-squares method to (10) and (11), unknown coefficientsαC, αS, βC, andβS may be determined. Then
(aI , θI ) and (aR, θR) can be determined from (12), and the final results can be expressed with the incident wave taken as
the phase reference, as follows:

ζI = aI cos(ωt − kx)

ζR = aR cos(ωt + kx+ δR)

 (13)

where
aI =

√
α2

C + α
2
S , aR =

√
β2

C + β
2
S

δR = −2kx1 + tan−1(βS/βC) + tan−1(αS/αC)

 (14)

The transmission wave can be determined from the measurement at a downwave position, denoted asx = x2 (> 0), of
which the analysis method using the Fourier series is well-established and thus its explanation is omitted here. We should
note that the case ofN = 2 in the above procedure retrieves the Goda’s result [4].

4. Tested Model and Interim Results

The experiment is carried out in the wave channel (10 m in length, 0.4 m in water depth, and 0.3 m in width) at RIAM,
Kyushu University, with an asymmetric body shown in Fig. 3; each of the right and left section shapes below the still
water line is of Lewis form that can be represented by a conformal mapping in terms of the half breadth-to-draft ratio
H0 = b/d and the sectional area ratioσ = S/bd. As shown in Fig. 3, the right-hand shape (x > 0) is for H0 = 1.0 and
σ = 0.95 and the left-hand shape (x < 0) is for H0 = 1.0 andσ = 0.60.

Because there were some problems in the experimental set-up and we needed much time for identifying attenuation of
the wave amplitude while the wave propagating in the wave channel, only the results for the diffraction problem can be
reported in this paper. Remaining results may be presented at the Workshop.

Figure 4 shows the results of the reflection and transmission wave coefficients for both cases of the positive and negative
incident waves. No correction is made for taking account of the wave attenuation during the propagation along the wave
channel. First of all, we can see that the reciprocity relations, that is,

∣∣∣T+F ∣∣∣ = ∣∣∣T−F ∣∣∣ and
∣∣∣R+F ∣∣∣ = ∣∣∣R−F ∣∣∣, are satisfied with

good accuracy in the measured results. However, prominent discrepancy exists in the magnitude of the reflection-wave
coefficient between measured and computed results, implying obviously dissatisfaction of the wave-energy conservation.

We noticed attenuation of the wave amplitude through the measurement of incident waves only. Therefore, in order to
obtain a correction coefficient associated with attenuation of the wave amplitude, we conducted a subsidiary experiment
using a vertical wall that reflects the incident wave completely. Figure 5 shows the results, in which the reflection-wave
coefficient is obviously smaller that 1.0 to be expected at all frequencies tested. With an assumption that both incident
wave and reflection wave decay in proportion to the propagation distance, the following relation

(R)e
(
1− αℓa

)2
= (R)m (15)

(R)m(
1− αℓa

)2 = (R)e = 1.0 (16)

α =
1
ℓa

{
1−
√

(R)m

}
(17)



were applied to obtain the attenuation factorα, where (R)e and (R)m denote respectively expected and measured values
of the reflection-wave coefficient, andℓa is the average distance of the measured points up to the vertical wall. After
determining the value ofα with (R)e = 1.0 specified at all frequencies tested, the results shown in Fig. 4 were corrected in
terms of the following equations:

R=
(R)m(

1− αℓa
)2 , T =

(T)m(
1− αℓa

)(
1− αℓT

) (18)

HereℓT (= x2) denotes the position of the wave probe for measuring the transmission wave. The results after correction
based on (18) are shown in Fig. 6, and we can see that the degree of agreement particularly in the reflection wave coefficient
is much improved. Nevertheless, we can see that the conservation of wave energy is still not satisfied; this may be
attributed partly to the energy dissipation around a body due to the viscosity of fluid. Subsequent experiments are still
ongoing for checking the conservation of wave energy, the phase difference, and for the case where a body oscillates in
waves which is the original purpose of the present experiment.
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Fig. 3 Section shape of asymmetric Lewis-form body
used in the experiment and numerical compu-
tations.

Fig. 4 Reflection and transmission coefficients for the
diffraction problem (original data with no correc-
tion).
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Fig. 5 Measured reflection-wave coefficient by a vertical
wall, from which the wave attenuation factor was ob-
tained at each frequency.

Fig. 6 Reflection and transmission coefficients for the
diffraction problem (with correction for wave atten-
uation).


